A Field Comparison of Fresnel Zone and Ray-Based GPR Attenuation-Difference Tomography for Time-Lapse Imaging of Electrically Anomalous Tracer or Contaminant Plumes
نویسندگان
چکیده
Ground-penetrating radar GPR attenuation-difference tomography is a useful tool for imaging the migration of electrically anomalous tracer or contaminant plumes. Attenuation-difference tomography uses the difference in the trace amplitudes of tomographic data sets collected at different times to image the distribution of bulk-conductivity changes within the medium. The most common approach for computing the tomographic sensitivities uses ray theory, which is well understood and leads to efficient computations. However, ray theory requires the assumption that waves propagate at infinite frequency, and thus sensitivities are distributed along a line between the source and receiver. The infinite-frequency assumption in ray theory leads to a significant loss of resolution both spatially and in terms of amplitude of the recovered image. We use scattering theory to approximate the sensitivity of electromagnetic EM wave amplitude to changes in bulk conductivity within the medium. These sensitivities occupy the first Fresnel zone, account for the finite frequency nature of propagating EM waves, and are valid when velocity variations within the medium do not cause significant ray bending. We evaluate the scattering theory sensitivities by imaging a bromide tracer plume as it migrates through a coarse alluvial aquifer over two successive days. The scattering theory tomograms display a significant improvement in resolution over the ray-based counterparts, as shown by a direct comparison of the tomograms and also by a comparison of the vertical fluid conductivity distribution measured in a monitoring well, located within the tomographic plane. By improving resolution, the scattering theory sensitivities increase the utility of GPR attenuation-difference tomography for monitoring the movement of electrically anomalous plumes. In addition, the improved accuracy of information gathered through attenuation-difference tomography using scattering theory is a positive step toward future developments in using GPR data to help characterize the distribution of hydrogeologic properties.
منابع مشابه
field comparison of Fresnel zone and ray-based GPR ttenuation-difference tomography for time-lapse imaging of lectrically anomalous tracer or contaminant plumes
Ground-penetrating radar GPR attenuation-difference tomography is a useful tool for imaging the migration of electrically anomalous tracer or contaminant plumes. Attenuation-difference tomography uses the difference in the trace amplitudes of tomographic data sets collected at different times to image the distribution of bulk-conductivity changes within the medium. The most common approach for ...
متن کاملAttenuation-Difference Tomography of Crosswell Radar Data Using Fresnel Theory
The traditional approach to attenuation-difference tomography employs the ray approximation where waves are assumed to propagate at infinite frequency. The ray approximation causes significant model error that generates artifacts and loss of resolution in tomographic images. In this paper, we use finite frequency (Fresnel volume) physics to represent wave propagation and propose an efficient me...
متن کاملElectrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer
Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...
متن کاملComputed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends
The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...
متن کاملEvaluation of effect of gold nanorods and spherical gold nanoparticles of different sizes on X-ray attenuation in computed tomography
Introduction: To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agent for CT imaging and therapeutics. This study was designed to evaluate any effect on X-ray attenuation that might result from using GNPs with a variety of size, surface chemistries and shapes. Materials and Methods: Spherical GNPs and gold nanorod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015